

Discovery of the Σ_b Baryons at CDF

Jennifer Pursley

The Johns Hopkins University

Fermilab Users' Meeting, June 6-7, 2007 Featured Student Talk

<u>Outline</u>

- Motivation: why study heavy baryons?
- Heavy baryon spectroscopy
- \blacksquare Σ_b theoretical predictions
- \blacksquare Σ_b search methodology
- $\blacksquare \Sigma_{b}$ reconstruction
- $\blacksquare \Sigma_b$ results

- Why study baryons with heavy quarks?
 - □ High energy data gives precise tests of perturbative Quantum Chromodynamics (QCD)
 - □ Few tests at low energies (non-perturbative)
 - Non-perturbative QCD effects could obscure or confuse new physics signatures!
 - Quark interactions inside hadrons described by nonperturbative QCD...
- Heavy baryons: best way to study nonperturbative QCD
 - □ Find as many states as possible
 - □ Measure properties (mass, width, lifetime...)
 - □ Compare to a number of theoretical models
- Finding new particles also good "practice" for LHC!

Heavy Baryon Spectroscopy

- Heavy quark effective theory (HQET)
 - □ Baryons with one heavy and two light quarks:
 - Treat heavy quark as static source of color field
 - Light quarks form a diquark pair
 - Infinite heavy quark mass → angular momentum and flavor of diquark are good quantum numbers
- HQET extensively tested for *Qq* systems, interesting to test for *Qqq*
- Heavy baryon predictions from many different models:
 - \square HQET, potential models, $1/N_c$ expansion, sum rules, lattice QCD

Σ_b Theoretical Predictions

- \bullet Λ_b (*udb*) lowest mass *b* baryon
 - □ Only established *b* baryon
 - ☐ Flavor antisymmetric diquark state
 - Decays weakly
- Enough statistics at Tevatron to probe other b baryons
- Σ_b next accessible baryons:
 - □ Flavor symmetric diquark state
 - Decays strongly

$$= 3/2 + (\Sigma_b^*)$$

$$\Sigma_{b}$$
: { qq } b , $q = u$, d ; $J^{p} = S_{Q} + S_{qq}$

$$= 1/2^{+} (\Sigma_{b})$$

- $\Sigma_{\rm b}^{(*)0}$ decay to $\Lambda_{\rm b}\pi^0$
 - □ CDF detector can't reconstruct π^0 , won't see $\Sigma_b^{(*)0}$
- $\Sigma_b^{(*)\pm}$ decay to $\Lambda_b \pi^{\pm}$
- We expect to see:

$$\Sigma_b^+$$
, Σ_b^- , Σ_b^{*+} , Σ_b^{*-}

$$\Sigma_{b}^{(*)0} = udb$$

$$\Sigma_{b}^{(*)+} = uub$$

$$\Sigma_{b}^{(*)-} = ddb$$

Σ_b Theoretical Predictions

- From heavy baryon models, we expect:
 - $\square \Sigma_b^*$ heavier than Σ_b (hyperfine splitting)
 - $\square \Sigma_{b}^{-}$ heavier than Σ_{b}^{+} (strong isospin splitting)
 - $\square \Sigma_b^{(*)}$ intrinsic width determined by phase space of one pion P-wave transition
- Summary of predictions:

Σ_b property	Expected values (MeV/c^2)				
$\mathrm{m}(\Sigma_b)$ - $\mathrm{m}(\Lambda_b^0)$	180 - 210				
$\operatorname{m}(\Sigma_b^*)$ - $\operatorname{m}(\Sigma_b)$	10 - 40				
$\operatorname{m}(\Sigma_b^-)$ - $\operatorname{m}(\Sigma_b^+)$	5 - 7				
$\Gamma(\Sigma_b), \Gamma(\Sigma_b^*)$	$\sim 8, \sim 15$				

Σ_b Search Methodology

- Σ_b decays strongly at primary vertex \rightarrow combine Λ_b candidate with good-quality prompt track to make Σ_b candidate
- Separate Σ_{b}^{-} and Σ_{b}^{+} :

$$\square \quad \Sigma_b^{(*)-} \to \Lambda_b^0 \pi^- \to \Lambda_c^+ \pi^- \pi^- \ (+ \text{ c.c.})$$

$$\square \quad \Sigma_b^{(*)+} \to \Lambda_b^0 \pi^+ \to \Lambda_c^+ \pi^- \pi^+ \text{ (+ c.c.)}$$

Search for resonances in the mass difference:

$$Q = m(\Lambda_b \pi) - m(\Lambda_b) - m_{\pi}$$

- Unbiased Σ_b selection
 - □ Optimize Σ_b cuts without looking in Σ_b signal region of:

$$30 < Q < 100 \text{ MeV/c}^2$$

- In 1.1 fb⁻¹ of data, CDF has world's largest sample of Λ_h : ~3000
- Use CDF's two displaced track trigger to reconstruct

Proton from Λ_c and π from Λ_b usually satisfy two displaced track criteria

Σ_b Backgrounds

- Σ_b backgrounds:
 - □ Hadronization tracks around prompt Λ_b baryons
 − Dominant!
 - □ Hadronization tracks around B mesons reconstructed as Λ_b
 - Combinatorial background
- Determine background contributions from data and PYTHIA Monte Carlo
- Good agreement between Σ_b data and the expected background

Σ_b Signal Region

Excess observed in signal region:

Sample	Data events	Bkg events
$\Lambda_b^0\pi^-$	406	288
$\Lambda_b^0\pi^+$	404	313

lacktriangle Perform Σ_b signal fit to data

Σ_b Observation

- Model signal with unbinned likelihood fit
 - □ Background fixed
 - Peaks modeled by a Breit-Wigner convoluted with the detector resolution
 - □ Common parameter: $m(\Sigma_b^*) - m(\Sigma_b)$
- Observe signals consistent with lowest lying charged $\Sigma_b^{(*)}$ states
- No signal hypothesis excluded at high confidence level (> 5 σ)

Σ_b Measurement Results

$$m(\Sigma_b^+)$$
 - $m(\Lambda_b^0)$ - $m_{\pi} = 48.5^{+2.0}_{-2.2}$ (stat.) $^{+0.2}_{-0.3}$ (syst.) MeV/c²

$$m(\Sigma_b^-)$$
 - $m(\Lambda_b^0)$ - $m_{\pi} = 55.9 \pm 1.0$ (stat.) ± 0.2 (syst.) MeV/c²

$$m(\Sigma_b^{*-}) - m(\Sigma_b^{-}) = m(\Sigma_b^{*+}) - m(\Sigma_b^{+}) = 21.2^{+2.0}_{-1.9} \text{ (stat.) } ^{+0.4}_{-0.3} \text{ (syst.) } \text{MeV/c}^2$$

$$N(\Sigma_b^+) = 32_{-12}^{+13} \text{ (stat.) } ^{+5}_{-3} \text{ (syst.)}$$

$$N(\Sigma_b^-) = 59^{+15}_{-14} \text{ (stat.) } ^{+9}_{-4} \text{ (syst.)}$$

$$N(\Sigma_b^{*+}) = 77_{-16}^{+17} \text{ (stat.) } ^{+10}_{-6} \text{ (syst.)}$$

$$N(\Sigma_b^{*-}) = 69_{-17}^{+18} \text{ (stat.) } ^{+16}_{-5} \text{ (syst.)}$$

- Good agreement with theoretical predictions
- Theoretical models do well in nonperturbative QCD regime

Summary

- First observation of resonant $\Lambda_h \pi^{\pm}$ states
 - \Box Consistent with lowest lying charged Σ_{b} states
 - □ With $m(\Lambda_b) = 5619.7 \pm 1.2$ (stat.) ± 1.2 (syst.) MeV/c²,

$$m(\Sigma_b^+) = 5807.8^{+2.0}_{-2.2} \text{ (stat.)} \pm 1.7 \text{ (syst.)} \text{ MeV/c}^2$$

 $m(\Sigma_b^-) = 5815.2 \pm 1.0 \text{ (stat.)} \pm 1.7 \text{ (syst.)} \text{ MeV/c}^2$
 $m(\Sigma_b^{*+}) = 5829.0^{+1.6}_{-1.8} \text{ (stat.)} ^{+1.7}_{-1.8} \text{ (syst.)} \text{ MeV/c}^2$
 $m(\Sigma_b^{*-}) = 5836.4 \pm 2.0 \text{ (stat.)} ^{+1.8}_{-1.7} \text{ (syst.)} \text{ MeV/c}^2$

- Continuing research:
 - \square Improve Σ_{b} measurement measure width, polarization...
 - Search for more heavy baryons!
 - □ Continue testing theoretical models

Σ_b Observation!

Backup Slides

Baryon multiplets:

Σ_b Backgrounds

- Σ_b backgrounds:
 - □ Hadronization tracks around prompt Λ_b − Dominant!
 - □ B meson hadronization tracks
 - Combinatorial background

- Take background shapes from data or PYTHIA Monte Carlo, normalize using Λ_b sample comp.
- Backgrounds are fixed before looking in the Σ_h signal region

Background type		Sample	Contribution	
Λ_b HA+UE		PYTHIA	dominant	
Combinatorial		Upper Λ_b sideband $m(\Lambda_b) \in [5.8, 7.0]$	small	
B mesons		data	small	
B meson reflections	$\pi_{\scriptscriptstyle \Sigma}$ from B HA+UE	Pythia	Dominant within B	
	π_{Σ} from B decay (D*, D**)	Inclusive BGen	negligible	
	π_{Σ} from B**	B0 Pythia	negligible	

Strength of Σ_b hypothesis

Evaluate Likelihood Ratio:

$$LR = L_{\text{no peak fit}}$$

$$L_{\text{four peak fit}}$$

- Systematic variations included as nuisance parameters
- Simplistic MC studies show the no signal hypothesis excluded at > 5 σ level

Hypothesis	$\Delta(-\ln L)$	<i>p</i> -values
No Signal	42.4	< 8.3 x 10 ⁻⁸ (> 5.2 σ)
$2 \Sigma_b$ States	15.3	9.2 x 10 ⁻⁵ (3.7 σ)
No Σ_b^- Peak	11.7	3.2×10^{-4} (3.4 σ)
No Σ_b^+ Peak	3.9	9.0 x 10 ⁻³ (2.4 σ)
No Σ_b^{*-} Peak	10.8	6.4 x 10 ⁻⁴ (3.2 σ)
No Σ_b^{*+} Peak	11.3	6.0 x 10 ⁻⁴ (3.2 σ)

Zero and Two Peak Fits

- Two sources of systematics:
 - Mass scale
 - Assumptions made in the fit to data
- For mass scale: take difference between CDF and PDG values for
 - \square D*, Σ_c^{0} , Σ_c^{++} , and Λ_c^{*}
 - \square Model with a linear function to extrapolate for Σ_b Q values
 - □ This is the largest syst error on the mass diff measurement!

Particle	$Q (\text{MeV/c}^2)$	Mass Syst. (MeV/c ²)
Σ_b^+	48.2	0.19
Σ_b^-	55.9	0.22
Σ_b^{*+}	69.7	0.28
Σ_{b}^{*-}	77.4	0.32
$\Sigma_b^* - \Sigma_b$	$\Delta Q = 21.2$	0.10

Fit Systematics

- Background model
 - \Box Limited knowledge of Λ_b had. shape (reweighting Pythia) largest error on the yield measurements
 - \square Sample composition from Λ_b mass fit
- Signal model
 - Detector resolution underestimated in Monte Carlo
 - Natural width estimation has some uncertainty
 - \square Constraint that $m(\Sigma_b^{*-}) m(\Sigma_b^{--}) = m(\Sigma_b^{*+}) m(\Sigma_b^{+-})$
- To evaluate:
 - □ Generate Toy MC samples with one systematic variation
 - ☐ Fit samples with variation and default fit
 - □ Take the average shift in parameter value as syst. error
- All systematics much smaller than statistical error!

Σ_{b} Systematics

Parameter	Mass scale	$egin{array}{c} egin{array}{c} A_b \ Sample \ Comp_{_i} \end{array}$	Λ _b Ha+UE Norm.	Λ _b Ha+UE Shape	Λ _b Ha+UE Reweight	Det. Reso.	Σ _b Nat. Width	${\Sigma_b}^*$ - ${\Sigma_b}$ Isospin Diff.	Total
$\Sigma_b^- Q$	0.22	0.00	0.009	0.000	0.04	0.0	0.009	0.06	0.23
(MeV/c²)	-0.22	-0.03	-0.002	-0.011	-0.0004	-0.011	-0.005	0.0	-0.22
$\Sigma_b^+ Q$	0.19	0.03	0.013	0.013	0.0	0.0	0.01	0.0	0.19
(MeV/c^2)	-0.19	0.0	-0.013	0.0	-0.11	-0.014	-0.02	-0.11	-0.25
Σ_b^* - Σ_b Q	0.10	0.05	0.14	0.04	0.32	0.02	0.07	0.0	0.38
(MeV/c²)	-0.10	0.0	-0.13	0.0	0.0	0.0	-0.07	-0.26	-0.32
Σ_b^- events	0.0	0.7	2.2	0.3	7.4	0.3	3.4	0.0	8.5
	0.0	0.0	-2.2	0.0	0.0	0.0	-3.4	-0.08	-4.1
Σ_b^+ events	0.0	3.3	2.1	1.2	2.3	0.3	1.8	0.0	5.0
	0.0	0.0	-2.1	0.0	-1.8	0.0	-2.0	-0.004	-3.4
${\Sigma_b}^{*-}$ events	0.0	0.4	4.8	0.3	14.7	0.1	1.7	0.0	15.6
	0.0	0.0	-4.7	0.0	0.0	0.0	-1.7	-0.16	-5.0
${\Sigma_b}^{*+}$ events	0.0	7.3	4.8	2.8	4.6	0.2	0.8	0.16	10.3
	0.0	0.0	-4.8	0.0	-2.9	0.0	-0.8	0.0	-5.7

- Mass scale systematic dominates
- All systematics much smaller than statistical error!